Access vs. Excess to Antimicrobial under the Universal Health Coverage Systems in Thailand

Suwit Wibulpolprasert, M.D.
Senior Advisor to the Minister of Public Health, Thailand

Uppsala Health Summit, Uppsala Concert and Congress,
Uppsala, Sweden, 2 June 2015
Country Profile: Thailand (2014)

- Population: 65.7 million
- GNI (2013): $US 5,570 (UMIC)
- Health status:
 - U5MR: 14/1,000 LBs
 - MMR: 48/100,000 LBs
- ANC & hospital delivery: 99%
- Doctor+nurse/midwife: 3.0/1,000 pop.
- UHC in 2002 with comprehensive package and almost no co-payment
- Gov’t health spending: 14 % TGS
- Total Health Expenditure (2012):
 - < 5-6 % GDP [< $US 320/cap]
 - Out of pocket: 14% of THE
AMR burden

Thailand (Pumart 2011)
- 64 millions
- 38,000 deaths
- 0.6% of GDP

Global context
- At present, 700,000 deaths globally due to AMR.
- Failure to tackle AMR will lead to 10 million deaths/year and cost US$ 100 trillion by 2050.
- The highest impact will be found in Asia and Africa, 4.7 and 4.2 million deaths, respectively. (O’Neill J, 2014)
Access to Antimicrobials under UHC

• Universal right of access to all antimicrobials in the National Essential Drug Lists (more than 800 items of drugs)

• Free at point of services without co-payment

• Tax supports to provider by capitation systems so provider shoulder the financial burden of prescribing antimicrobials not the patients – reducing excessive use but also access??
Challenges to Access

• Inclusion of New and high price antimicrobials in the NEDL – based on evidence on Health Technology Assessment – serious price negotiation, e.g. third line ARVs, new antivirals for Hepatitis C

• Providers’ hesitation to prescribe certain high price antimicrobials due to financial burden – centralized purchasing and VMI systems
Antibiotic consumption

- **Human sector:** Antibiotic consumption is on the rise worldwide, with a 36% increase between 2000 and 2010.
- **Animal sector:** the global consumption of antimicrobials will increase by 67%, from 63,000 tons to 105,000 tons.

Thailand context (2014)

- Total drug consumption: 6,000 million USD
- >20% are antimicrobials and 50% are antibiotics
Excessive use of antimicrobials

- Use in private pharmacies, clinics and hospitals based on out of pocket fee for services payment – escape from the long queue in the UHC systems
- The culture of doctors ‘prescribe’ and ‘dispense’ and the pharmacist ‘dispense and prescribe’ – strong financial incentives
- The Know-do gap, e.g., URI, Diarrhea, simple wounds, prophylaxis
- Use as growth stimulators in animal feeds
Toward restricting antibiotic sale
Top-down & Bottom-up

• **Top-down approach**
 – Subcommittee on antimicrobial reclassification
 • Antimicrobials for animal use
 • Antimicrobial for human use

• **Bottom-up approach**
 – Antibiotic Smart Use (ASU) (2007 – present)
 – ASU-kids 2014 (QSNICH – Children hospital)
 – Antibiotic Awareness Day in Thailand 2013 (DSMDC/CSO)
 – Rational Drug Use Hospital project (2015 – present)
Antibiotic Smart Use (ASU)

• **Ultimate goal:** To create new social norms on rational use of antibiotics
 – Use 3 diseases: URI, acute diarrhea and simple wound as a pioneering case

• ASU was introduced in 2007 by FDA under a seed fund from WHO.

• ASU practice was adopted in many settings
 – Teaching hospitals
 – Children hospital (ASU-kids)
 – Provincial / district / sub-district hospitals,
 – Pharmacies
 – Communities & Schools
 – Medical / Pharmacy schools
Phase I: Test interventions to change prescribing behavior in 10 district hospitals and 87 health centers in Saraburi province. (2007-8) (Quasi-exp. with control group) (WHO)

Phase II: Test feasibility of scaling up program in 44 hospitals and 627 health centers in 3 provinces (large, medium and small provinces) and 2 hospital networks (public and private hospitals) (2008-9)

Phase III: Toward sustainability via policy advocacy, network strengthening and development of new social norms (2010-present)

P4P by NHSO
• In 2009-2011, ASU is accepted as a process indicator for P4P
• In 2012, the NHSO change ASU into the output/outcome indicator.
Rate of antibiotic prescription in URI (2012 – 2015)

Data sources: OP VISIT = 344,054,775 VISIT; DIAG_URI = 25,299,389 VISIT; ATB USED = 12,373,774 VISIT
Source: National Health Security Office (Trithape Fongthong, 2015)
Rate of antibiotic prescription in acute diarrhea (2012 – 2015)

Data sources: OP VISIT = 344,054,775 VISIT; DIAG_AGE = 5,619,001 VISIT; ATB USED = 2,398,638 VISIT
Source: National Health Security Office (Trithape Fongthong, 2015)